A Subset of Replication Proteins Enhances Origin Recognition and Lytic Replication by the Epstein-Barr Virus ZEBRA Protein
نویسندگان
چکیده
ZEBRA is a site-specific DNA binding protein that functions as a transcriptional activator and as an origin binding protein. Both activities require that ZEBRA recognizes DNA motifs that are scattered along the viral genome. The mechanism by which ZEBRA discriminates between the origin of lytic replication and promoters of EBV early genes is not well understood. We explored the hypothesis that activation of replication requires stronger association between ZEBRA and DNA than does transcription. A ZEBRA mutant, Z(S173A), at a phosphorylation site and three point mutants in the DNA recognition domain of ZEBRA, namely Z(Y180E), Z(R187K) and Z(K188A), were similarly deficient at activating lytic DNA replication and expression of late gene expression but were competent to activate transcription of viral early lytic genes. These mutants all exhibited reduced capacity to interact with DNA as assessed by EMSA, ChIP and an in vivo biotinylated DNA pull-down assay. Over-expression of three virally encoded replication proteins, namely the primase (BSLF1), the single-stranded DNA-binding protein (BALF2) and the DNA polymerase processivity factor (BMRF1), partially rescued the replication defect in these mutants and enhanced ZEBRA's interaction with oriLyt. The findings demonstrate a functional role of replication proteins in stabilizing the association of ZEBRA with viral DNA. Enhanced binding of ZEBRA to oriLyt is crucial for lytic viral DNA replication.
منابع مشابه
Activation domain requirements for disruption of Epstein-Barr virus latency by ZEBRA.
Latent infection of B lymphocytes by Epstein-Barr virus (EBV) can be disrupted by expression of the EBV ZEBRA protein. ZEBRA, a transcriptional activator, initiates the EBV lytic cascade by activating viral gene expression. ZEBRA is also indispensable for viral replication and binds directly to the EBV lytic origin of replication. The studies described herein demonstrate that the activation dom...
متن کاملPhosphoacceptor site S173 in the regulatory domain of Epstein-Barr Virus ZEBRA protein is required for lytic DNA replication but not for activation of viral early genes.
The Epstein-Barr virus ZEBRA protein controls the viral lytic cycle. ZEBRA activates the transcription of viral genes required for replication. ZEBRA also binds to oriLyt and interacts with components of the viral replication machinery. The mechanism that differentiates the roles of ZEBRA in regulation of transcription and initiation of lytic replication is unknown. Here we show that S173, a re...
متن کاملEssential role of Rta in lytic DNA replication of Epstein-Barr virus.
Two transcription factors, ZEBRA and Rta, switch Epstein-Barr virus (EBV) from the latent to the lytic state. While ZEBRA also plays an obligatory role as an activator of replication, it is not known whether Rta is directly required for replication. Rta is dispensable for amplification of an oriLyt-containing plasmid in a transient-replication assay. Here, we assessed the requirement for Rta in...
متن کاملLate gene expression from the Epstein-Barr virus BcLF1 and BFRF3 promoters does not require DNA replication in cis.
Late gene expression follows and is dependent upon lytic replication of the viral genome. Although experimental evidence is lacking, lytic viral DNA replication is believed to remove modifications or binding factors from the genome which serve to repress late gene expression during latency or the early lytic cycle. We have developed a reporter assay to begin characterizing the mechanisms that r...
متن کاملDNA Damage Signaling Is Induced in the Absence of Epstein—Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic ...
متن کامل